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Target Assignment in Robotic Networks: Distance
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Abstract—We study the problem of assigning a group of mobile
robots to an equal number of distinct static targets, seeking to
minimize the total distance traveled by all robots until each
target is occupied by a robot. In the first half of our paper, the
robots assume limited communication and target-sensing range;
otherwise, the robots have no prior knowledge of target locations.
Under these assumptions, we present a necessary and sufficient
condition under which true distance optimality can be achieved.
Moreover, we provide an explicit, non-asymptotic formula for
computing the number of robots needed for achieving distance
optimality in terms of the robots’ communication and target-
sensing ranges with arbitrary guaranteed probabilities. We also
show that the same bound is asymptotically tight.

Because a large number of robots is required for guaran-
teeing distance optimality with high probability, in the second
half of our study, we present suboptimal strategies when the
number of robots cannot be freely chosen. Assuming that each
robot is aware of all target locations, we first work under a
hierarchical communication model such that at each hierarchy
level, the workspace is partitioned into disjoint regions; robots
can communicate with one another if and only if they belong
to the same region. This communication model leads naturally
to hierarchical strategies, which, under mild assumptions, yield
constant approximations of true distance-optimal solutions. We
then revisit the range-based communication model and show that
combining hierarchical strategies with simple rendezvous-based
strategies results in decentralized strategies which again achieve
constant approximation ratios on distance optimality. Results
from simulation show that the approximation ratio is as low
as 1.4.

I. INTRODUCTION

In this paper, we study the permutation-invariant assignment
of a set of networked robots to a set of targets of equal
cardinality in a planar setting. Focusing on minimizing the
total distance traveled by all robots, we seek true optimality
guarantees (i.e., sufficient conditions) and suboptimal strate-
gies under various communication and target-sensing capa-
bilities for the robots. For robot-to-robot communication, we
investigate a simple circular range-based model as well as a
region-based model (in which all robots within the same region
can communicate with each other) that leads naturally to
hierarchical decision-making processes. For detecting targets,
a circular range sensing model is used. In the study of
suboptimal strategies, we further establish their parametrized
performance characteristics.
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The class of problems that we study is denoted as target
assignment in robotic networks as it shares many similarities
with the problems studied by Smith and Bullo in [25]. In [25],
the authors characterized the performance of ETSP 1 ASSGMT

and GRID ASSGMT algorithms (strategies) in achieving time
optimality (i.e., minimizing the time until every target is occu-
pied). In contrast, we focus on minimizing the total distance
traveled by all robots with significant different assumptions
on the robots’ models. The total distance serves as a proper
proxy to quantities such as the total energy consumption of
all robots. Note that a distance-optimal solution for the target
assignment problem generally does not imply time optimality
and vise versa [31].

As the name implies, an assignment (or matching) problem
is embedded in the problem of target assignment in robotic
networks. The assignment problem is extensively studied in
the area of combinatorial optimization, with polynomial time
algorithms available for solving many of its variations [3], [4],
[6], [9], [16], [33]. If we instead put more emphasis on multi-
robot systems, the problems of robotic task allocation [14],
[26], [27], [32], swarm reconfiguration [7], multi-robot path
planning [15], [24], [28], and multi-agent consensus [8], [13],
[17], [18] emerge. For a more comprehensive review on these
topics, see [5].

Our work is also closely related to the study of connectivity
of wireless networks. An interesting result [30] showed that,
if n robots are uniformly randomly scattered in a unit square,
then each robot needs to communicate with k = Θ(logn)
nearest neighbors for the entire robotic network to be asymp-
totically connected as n approaches infinity. In particular,
the authors of [30] showed that k < 0.074logn leads to an
asymptotically disconnected network wheres k > 5.1774logn
guarantees asymptotic connectivity. This pair of bounds was
subsequently improved and extended in [2]. These nearest
neighbor based connectivity models were further studied in
[11], [12], [19], to list a few. In many of these settings, a
geometric graph structure is used [22].

In this research effort, we bring forth three contributions.
First, for robots with arbitrarily limited range-based target-
sensing and communication capabilities (with ranges captured
by radii rsense and rcomm, respectively), we derive necessary
and sufficient conditions for ensuring a distance-optimal solu-
tion. In particular, we provide a probabilistic estimate of the
number of robots (denoted n) sufficient for all robots to form a
connected network given a communication range (some radius

1ETSP stands for the Euclidean traveling salesman problem, in which the
distance (weight) between two graph nodes is determined by the physical
distance of their embeddings in the plane.
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rcomm). In contrast to connectivity results from [21], [30], we
give n as an explicit function of rcomm without the asymptotic
assumption employed in [21], [30]. Therefore, our bounds do
not depend on n being large. We further show that our bound
is also asymptotically tight when a high probability guarantee
is required.

Second, allowing the robots to have global target-sensing ca-
pabilities coupled with a region-based communication model,
we adapt results on one-dimensional random walk to show
that an infinite family of hierarchical strategies can produce
assignments in a decentralized way while simultaneously
ensuring that the total distance traveled by the robots is
within a constant (asymptotic) bound of the optimal distance.
Our simulation results show that this bound can often be
smaller than two. Moreover, because hierarchical strategies
avoid running a centralized assignment algorithm, significant
saving on computation time (in certain cases, a speedup of
1000× or more) is achieved.

Third, for robots with global target-sensing capabilities and
a range-based communication model, hierarchical strategies
(for assignment) and rendezvous-based strategies (for compen-
sating the lack of global communication) are combined to ob-
tain decentralized suboptimal algorithms. These hybrid strate-
gies, under some mild assumptions, preserve the (asymptotic)
constant approximation ratios on distance optimality achieved
by the the “pure” hierarchical strategies. A result of simulation
shows that the cost introduced by the rendezvous requirement
becomes negligible as the number of robots increases.

The rest of the paper is organized as follows. In Section
II, we introduce notations and well-known results from other
branches of research needed for the development of our results.
Sections IV-VI then elaborate on the three stated contributions,
one contribution per section, in the order as they are given. We
conduct simulations in Section VII to confirm our theoretical
findings and conclude in Section VIII.

II. PRELIMINARIES

In this section, we review results on balls and bins, lin-
ear assignment, and random geometric graphs. The symbols
R,R+,N denote the set of real numbers, the set of positive
reals, and the set of positive integers, respectively. For a
positive real number x, logx denotes the natural logarithm of
x; the function �x� (respectively, �x�) denotes the smallest (re-
spectively, largest) integer that is larger (respectively, smaller)
than x. Let A be a set, |A| denotes its cardinality. We use
‖ v ‖2 to denote the Euclidean 2-norm of a vector v. The unit
square [0,1]× [0,1]⊂R

2 is denoted as Q. The expectation of a
random variable X is denoted as E[X ]. We use E(·) to denote
a probabilistic event and the probability with which an event
e occurs is denoted as P(e).

Given two functions f ,g : R+ →R
+, f (x) = O(g(x)) if and

only if there exist MO,xO ∈R
+ such that

∀x > xO, | f (x)| ≤ MO|g(x)|.
Similarly, f (x) =Ω(g(x)) if and only if there exist MΩ,xΩ ∈

R
+ such that

∀x > xΩ, | f (x)| ≥ MΩ|g(x)|.

If f (x) = O(g(x)) and f (x) = Ω(g(x)), then we say f (x) =
Θ(g(x)). Finally, f (x) = o(g(x)) (respectively, f (x) =ω(g(x)))
if and only if f (x) = O(g(x)) (respectively, f (x) = Ω(g(x)))
and ¬( f (x) = Θ(x)).

A. Balls and bins

The well-studied problem in probability theory known as
the urns-problem, or the problem of balls and bins, considers
the distribution generated as a number of balls are randomly
tossed into a set of bins. The following classical result on the
ball and bins problem is due to Erdős and Rényi.

Theorem 1 (Balls and bins [10]) Suppose that a number of
balls are tossed uniformly randomly into m bins, one ball per
time step. Let Tk denote the first time such that k balls are
collected in every bin. Then for any real number c,

lim
m→∞

P(Tk < m logm+(k− 1)m loglogm+ cm) = e−e
− c
(k−1)!

.

(1)

It is worth noting that the proof of Theorem 1 is fairly short
and elegant, employing only basic tools from analysis and
combinatorics. A useful corollary for k = 1 readily follows.

Corollary 2 For an arbitrary real number c, suppose that no
fewer than (m logm+cm) balls are tossed uniformly randomly
into m bins. As m → ∞, every bin contains at least one ball
with probability e−e−c

.

PROOF. In (1), let k = 1 yields

P(T1 < m logm+ cm) = e−e−c
. (2)

The corollary directly follows (2) (recall that T1 is the number
of tosses needed so that every bin has at least one ball). �

Corollary 2 says that T1 ≈ m logm is a “sharp” threshold:
Letting c = 5 in (2) yields that the probability of every bin
being occupied by at least one ball is greater than 0.99 when
there are at least m logm + 5m balls. On the other hand,
the same probability is no more than 0.001 when there are
m logm− 2m balls.

B. The assignment problem

The (linear) assignment problem, as a fundamental combi-
natorial optimization problem, can be defined as follows.

Problem 1 (Linear Assignment Problem) Given two finite
sets X and Y with |X |= |Y |, together with a weight function
C : X ×Y → R, find a bijection f : X → Y that minimizes the
cost function

∑
x∈X

C(x, f (x)). (3)

Problem 1 is also called the perfect weighted bipartite
matching problem. Here, the mapping C is essentially a square
matrix that can be used to represent a variety of weights, such
as the Euclidean distance when X and Y represents physical
locations. The Hungarian method for the assignment problem,
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proposed by Kuhn [16], has an O(n4) running time, which
was subsequently improved to O(n3) by Edmonds and Karp
[9]. Many other algorithms for the assignment problem exist,
including other primal-dual (linear programming) methods
[6], auction based methods [3], and parallel algorithms [4],
[33]. Nevertheless, the strongly polynomial2 O(n3) Hungarian
method remains as the fastest exact (sequential) algorithm,
which we use in our simulations.

When X and Y are restricted to be points on the plane with
the weight function C being the Euclidean distances between
the points, the special linear assignment problem is known
as the Euclidean bipartite matching problem, which can be
solved exactly using an O(n2.5 logn) primal-dual algorithm
[29]. Alternatively, near linear time approximation algorithms
can yield near optimal solutions with high probability [23]. 3

C. Random geometric graphs

Let X = {x1, . . . ,xn} be a set of n points in the unit square
Q. For a fixed communication radius rcomm, the geometric
graph G over this set of points is formed by taking each point
as a vertex of the graph and connect any two vertices if the
underlying points x1 and x2 satisfies ‖ x1−x2 ‖2≤ rcomm. When
each x ∈ X is selected randomly following some distribution,
the resulting graph is called a random geometric graph.

Properties of random geometric graphs have been studied
extensively; see [22] for a thorough coverage. One such prop-
erty is the connectivity of these graphs, which is of particular
interest to wireless communication and robotic networks.

Theorem 3 (Random Geometric Graphs [21]) Let G be
the random geometric graph obtained following the uniform
distribution over the unit square for some n and rcomm. Then
for any real number c, as n → ∞ (rcomm → 0),

P(G is connected | πnr2
comm − logn ≤ c) = e−e−c

. (4)

From (4), it is possible to estimate the number of robots
required to guarantee a connected geometric graph G.

III. TARGET ASSIGNMENT IN ROBOTIC NETWORKS

In this section, we formally define the problem of target
assignment in robotic networks and the optimality objectives.

A. Problem statement

Let X0 = {x0
1, . . . ,x

0
n} and Y 0 = {y0

1, . . . ,y
0
n} be two sets of

points in the unit square Q (the superscript emphasizes that
these points are obtained at the start time t = 0), selected
uniformly randomly.4 Place n = |X0| = |Y 0| point robots on
the points in X 0, with robot ai occupying x0

i . Each robot has a

2A polynomial time algorithm runs in strongly polynomial time only if its
running time does not depend on the size of the input parameters. Note that
n is the number of input parameters in this case.

3Although algorithms from [23], [29] have theoretically faster running times
than the Hungarian method and apply to the problem that we study, they
are more difficult to implement and slower in practice unless |X | is very
large because they are no longer strongly polynomial time algorithms like the
Hungarian method.

4Our results readily extend to a square environment with arbitrary side
length through scaling.

unique integer label (e.g., i). In general, we denote robot a i’s
location (coordinates) at time t ≥ 0 as xi(t). The basic task
(to be formally defined) is to move the robots so that at some
final time t f ≥ 0, every y∈Y 0 is occupied by a robot (we may
assume that there is a final time t f

i for each robot ai, such that
xi(t) ≡ xi(t

f
i ) for t ≥ t f

i ). For convenience, we also refer to
X0 and Y 0 as the set of initial locations and the set of target
locations, respectively.

Motion model: A robot ai may start and stop moving with
unit speed in any direction. The control policy for a i is then
some ẋi = ui with ‖ ui ‖2∈ {0,1}. We assume that robots’
sizes are negligible with respect to the distance they travel
and ignore collisions between robots.

Communication Model 1: We study two communication
models in this paper. In the first communication model, a
robot ai may communicate with other robots within a disc
of radius rcomm centered at xi(t). At any given time t ≥ 0, we
define the (undirected) communication graph G(t) as follows,
which is a geometric graph that changes over time. G(t)
has n vertices v1, . . . ,vn, corresponding to robots a1, . . . ,an,
respectively. There is an edge between two vertices vi and v j if
the corresponding robot locations xi(t) and x j(t), respectively,
satisfy ‖ xi(t) − x j(t) ‖2≤ rcomm. Figure 1(a) provides an
example of a (disconnected) communication graph.

Since communication overhead is often negligible with
respect to the time it takes the robots to move, we assume that
all robots corresponding to vertices in a connected component
of the communication graph may exchange information as
needed instantaneously. In other words, robots in a connected
component of G(t) can be effectively treated as a single robot
insofar as decision making is concerned.

rcomm

(a) Comm. model 1 (b) Comm. model 2

Fig. 1. (a) The communication graph (solid blue nodes and edges) for a given
set of robots under Communication Model 1 with a communication radius of
rcomm. Robots (blue dots) in the same component can freely communicate. (b)
The communication graph for a set of robots under Communication Model 2
with m = b2 = 9.

Communication Model 2: In the second communication
model, the unit square Q is divided into some m = b2 equal
sized smaller squares (regions).5 Robots within each region
can communicate with one another but robots from different
regions cannot exchange information (see, e.g., Fig. 1(b)). This
model mimics the natural (geometrical) resource allocation
process in which supplies and demands are first matched

5In this paper, m is frequently used to denote the number of small squares
in a division of the unit square Q and b denotes the number of segments a side
of the unit square is divided into; the value of m and b may vary depending
on the context.
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locally; the surpluses and deficits within the each region then
get balanced out at larger regions, giving rise to a hierarchical
decision process.

Target-sensing model: We assume that a robot is aware of a
point y ∈Y 0 if ‖ y−xi(t) ‖2≤ rsense, the target sensing radius.

The problem we consider in this paper is defined as follows.

Problem 2 (Target Assignment in Robotic Networks)
Given X0, Y 0, rsense, and a communication model, find a
control strategy u = [u1, . . . ,un], such that for some 0≤ t f

i <∞
and some permutation σ of the numbers 1, . . . ,n, xi(t

f
i ) = y0

σ(i)
for all 1 ≤ i ≤ n.

Over all feasible solutions to an instance of Problem 2, we
are interested in minimizing the total distance traveled by all
robots, which can be expressed as

Dn =
n

∑
i=1

∫ t f
i

0
ẋi(t)dt. (5)

As an accurate proxy to measures such as the energy
consumption of the entire system, the cost defined in (5) is an
appropriate objective in practice. Unless otherwise specified,
distance optimality refers to minimizing Dn. Assuming that
robots must follow continuous paths, we let D∗

n denote the best
possible Dn, which may or may not be achievable depending
on the capabilities of the robots (e.g, if the robots cannot
follow straight line paths, then Dn > D∗

n). Let U denote the
set of all possible control strategies that solve Problem 2
given a fixed set of capabilities for the robots, infU Dn is then
the greatest lower bound achievable under these capabilities. 6

Besides distance optimality, we also briefly discuss the total
task completion time (i.e., the sum of the individual task
completion times as targets are occupied), denoted Tn. If all
robots start moving toward targets and do not stop in the
middle, Tn = Dn.

IV. GUARANTEEING DISTANCE OPTIMALITY FOR

ARBITRARY rcomm AND rsense

In this section, we use Communication Model 1. In general,
when rsense <

√
2 or rcomm <

√
2, it is impossible to guar-

antee distance optimality (i.e., infU Dn = D∗
n), since global

assignment is no longer possible in general. For example,
as rsense → 0, the robots must search for the targets before
assignment can be made; it is very unlikely that the paths taken
by the robots toward the targets will be straight lines, which
is required to obtain D∗

n. This raises the following question:
Given a pair of rcomm and rsense, under what conditions can we
ensure distance optimality? Theorem 4 answers this question.

Theorem 4 Under sensing and communication constraints
(i.e., rcomm,rsense <

√
2), infU Dn = D∗

n if and only if G(0)
is connected and every target y ∈ Y 0 is within a distance of
rsense to some x ∈ X0.

PROOF. We first prove the necessary conditions with two
claims: 1) an optimal assignment that minimizes Dn is possible

6Here inf is used instead of min because it is not immediately clear that
the minimum can always be reached.

in general only if G(0) is connected, and 2) an optimal
assignment that minimizes Dn is possible only if for all y∈Y 0,
y is within a distance of rsense to some x ∈ X 0.

To see that the first claim is true, we note that to get
a distance-optimal assignment, the robots cannot make any
unnecessary moves. This means that they must be able to
decide at t = 0 a pairing between elements of X 0 and Y 0

that minimizes Dn. We now show that this is not possible
in general for n = 2 and rcomm <

√
2. For n = 2, assume that

the two robots and two targets (a1, a2, y1, y2, respectively) are
located as given in Fig. 2 (solid blue and red dots). Because
they are out of each other’s communication radius, the robots
cannot communicate with each other. Robot a1 is of equal
distance to y1 and y2 wheres robot a2 is closer to y2 than it is
to y1. An optimal assignment requires that a1 goes to y1 and a2

goes to y2. Given this setting, it is impossible for a1 to decide
at t = 0 to go to y1 or y2 without knowing where a2 is. We
can readily extend the locations of the robots and targets to
include neighborhoods around them (the dotted circles in Fig.
2) to show that there is non-zero probability with which an
optimal assignment cannot be made at t = 0. This proofs that
that G(0) cannot have more than one connected component
and must be connected.

rcomm

rcomm

a1

a2

y1

y2

Fig. 2. A general setup in which the two robots cannot communicated with
each other at t = 0 and therefore, cannot decide an optimal assignment at
t = 0.

For the second claim, suppose that at t = 0, some y ∈Y 0 is
not within a distance of rsense to any x ∈ X 0. Then some robot
must move to search for that y. This will cause some robot to
follow a path that is not a straight line with probability one,
implying that Dn = D∗

n with probability zero.
It is not hard to see that the necessary conditions from the

two claims are also sufficient: when G(0) is connected and
each target is observable by some robot ai, the robots can
decide at t = 0 a global assignment that minimizes Dn. �

Theorem 4 suggests a simple way of ensuring distance opti-
mality by either increasing the number of robots or increasing
one or both of rcomm and rsense, which essentially leads to a
centralized communication and control strategy (Strategy 1).
Note that given the assignment permutation σ , each robot a i

can easily compute its straight-line path between x0
i and y0

σ(i).
Since every robot can carry out the computation in Strategy
1, to resolve conflicting decisions and avoid unnecessary
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computation, we may let the highest labeled robot (e.g., a n)
dictate the assignment process.

Strategy 1: CENTRALIZED ASSIGNMENT

Initial condition: X0,Y 0

Outcome: permutation σ that assigns robot ai to y0
σ(i)

1 compute di, j =‖ xi − y j ‖2 between each pair of (xi,y j)
in which xi ∈ X0 and y j ∈ Y 0

2 based on {di, j}, compute an optimal assignment for the
robots that minimizes Dn

3 communicate the assignment to all robots

The rest of this section establishes how the conditions from
Theorem 4 can be met. We point out that similar conclusions
can also be reached by exploring Theorem 3, which indirectly
yields an asymptotic estimate of the required number of robots
for G(0) to be connected, given an rcomm. We take a different
approach and produce the number as an explicit function of
rcomm, without the asymptotic assumption.

A. Guaranteeing a connected G(0)

Since the robots can be anywhere in the unit square Q,
given a communication radius of rcomm <

√
2, intuitively, at

least Θ(1/r2
comm) robots are needed for a connected G(0),

which requires the robot to take a roughly “regular” formation
such as a grid. It turns out that when the robots are randomly
distributed, not a great many more than Θ(1/r 2

comm) robots are
needed to ensure a connected communication graph G(0).

Lemma 5 Given a fixed rcomm <
√

2 and 0 < ε < 1, the
communication graph G(0) is connected with probability at
least 1− ε if the number of robots n satisfies

n = �
√

5
rcomm

�2 log(
1
ε
�

√
5

rcomm
�2). (6)

PROOF. We divide the unit square Q into m = b2 equal sized
small squares with b= �√5/rcomm�. Label these small squares
as {q1, . . . ,qm}. Under this division scheme, if a small square
qi (see, e.g., the gray one in Fig. 3) contains at least a robot,
the robot can communicate with any other robot in the four
squares sharing a side with qi.

1

2

b

.

.

.

rcomm

Fig. 3. If the small squares have a side length of �√5/rcomm� or smaller,
then a robot in such a square (e.g., the gray square) can communicate with
any robot in the four neighboring small squares.

If a small square qi contains a robot a, then a robot in
a neighboring square (those that share a side with q i) is

within rcomm of robot a by the assumption. Therefore, G(0)
is connected if each qi contains a robot. Let ni denote the
number of robots in qi. Then

P(ni = 0) = (1− 1
m
)n < e−

n
m .

The inequality holds because (1−x)n < e−nx for 0 < x < 1.
To see this, let f (x) = log(1− x)/x. The Taylor expansion of
f (x) at x = 0 is −1− x/2− x2/3+ o(x3)<−1 for 0 < x < 1.
This shows that log(1−x)<−x for 0< x< 1⇒ n log(1−x)<
−nx⇒ (1− x)n < e−nx. By Boole’s inequality, the probability
that at least one of the squares q1, . . . ,qm is empty can be
upper bounded as

P(
m⋃

i=1

E(ni = 0))≤
m

∑
i=1

P(ni = 0)< me−
n
m .

Setting me−n/m = ε and replacing m = �√5/rcomm�2 yields

�
√

5
rcomm

�2exp(−n
1

�
√

5
rcomm

�2
) = ε

⇒ n = (�
√

5
rcomm

�2) log(
1
ε
�

√
5

rcomm
�2),

which guarantees that each small square contains at least one
robot with probability 1− ε . �

We derive (6) in Lemma 5 so that the expression is more
uniform (see Theorem 12); it is possible to make n even
smaller. The following corollary illustrates one way to tighten
this bound.

Corollary 6 Given a fixed rcomm <
√

2 and 0 < ε < 1, the
communication graph G(0) is connected with probability at
least 1− ε if the number of robots n satisfies

n = �
√

5
rcomm

�2 log
[1

ε
(
1
2
�

√
5

rcomm
�2 + �

√
5

rcomm
�)
]

(7)

Fig. 4. As long as each of the colored squares contains an robot, G(0) must
be connected. Therefore, only b2/2+b squares need to have robots in them.

PROOF. If each of the colored squares in Fig. 4 has at least
one robot, then G(0) must be connected: any robot falling in
a white square must be connected to some robot in a colored
square. This shows that (7) is sufficient. �

Remark. In comparison to Theorem 3, Lemma 5 provides
n as an explicit function of rcomm. Moreover, our sufficient
condition on n given in (6) (and (7)), unlike (4), is not an
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asymptotic bound. Therefore, our bound applies to an arbitrary
rcomm. On the other hand, if we let rcomm → 0, then an
asymptotic statement can also be made.

Lemma 7 As rcomm → 0, the communication graph G(0) is
connected with arbitrarily high probability e−e−c

(for some
c > 0) if the number of robots n satisfies

n ≥ (2log�
√

5
rcomm

�+ c)�
√

5
rcomm

�2. (8)

PROOF. Given the division scheme used in the proof of
Lemma 5, distributing robots into the unit square Q is
equivalent to tossing the robots (balls) into the m small
squares (bins), uniformly randomly. By Corollary 2, having
n≥m logm+cm= (2log�√5/rcomm�+c)�√5/rcomm�2 robots
guarantees that all m small squares must have at least one
robot each with probability e−e−c

. �

Since f (x) = cx grows slower than g(x) = x logx as x → ∞,
Lemma 7 says that n=Θ((1/rcomm)

2 log(1/rcomm)) robots can
ensure that G(0) is connected with probability arbitrarily close
to one asymptotically. Next, we show that this many robots
are also necessary for the high probability guarantee.

Let Pn,m(E) denote the probability of event E happening
after tossing n balls into m bins. We work with two events:
E0, the event that “at least one bin has zero balls in it”, and
E1, the event that “at least one bin contains exactly one ball”.
We want to show that Pn,m(E1) is not too small for n up to
m logm, which is proven over the next two lemmas.

Lemma 8 Suppose that 1 ≤ n ≤ m balls are tossed uniformly
randomly into m bins. Then for large m,

Pn,m(E1)≥ e−1.

PROOF. Because all bins are initially empty, after tossing
the first ball, some bin contains exactly one ball. That is,
P1,m(E1)= 1. Let the bin occupied by the first ball be bin 1. As
k−1 additional balls are tossed into the m bins, the probability
that none of these k− 1 balls occupy bin 1 is (1− 1/m) k−1.
Therefore, for 1 ≤ k ≤ m tosses, we have

Pk,m(E1)≥ P1,m(E1)(1− 1
m
)k−1

> P1,m(E1)(1− 1
m
)m

≈ P1,m(E1)e
−1 = e−1 ≈ 0.37.

The first approximation in the above derivation is due
to the function log(1− x)1/x having a Taylor expansion of
−1+ o(1) for small positive x. This is where the assumption
of “large m” is used in this lemma. �

Lemma 9 Suppose that m < n < m logm balls are tossed
uniformly randomly into m bins. As m → ∞,

Pn,m(E1)≥ 0.34.

PROOF. Suppose that after an experiment of n ′ tosses into m
bins, E0 holds; i.e., at least one bin is empty. Without loss

of generality, we assume that the empty bin is bin 1. Now
consider tossing an additional k balls into the m bins. The
probability of exactly one of these k balls falling in bin 1 is

Pk,m(exactly one ball falls in bin 1)

=

(
k
1

)
1
m
(1− 1

m
)k−1 =

k
m
(1− 1

m
)k−1.

Therefore,

Pn′+k,m(E1)
≥ Pn′,m(E0)Pk,m(exactly one ball falls in bin 1)

≈ k
m
(1− 1

m
)k−1Pn′,m(E0).

(9)

Let c =−1 in Corollary 2, we have

P(T1 ≥ m logm−m) = 1− e−e1
> 0.93. (10)

That is, as m → ∞, for 0 < n′ < m logm−m, Pn′,m(E0) ≥
0.93. Plugging this into (9) and let k = m, then for m < n <
m logm, as m → ∞,

Pn,m(E1)≥ 0.93
m
m
(1− 1

m
)m−1 ≈ 0.93e−1 ≈ 0.34.

�

We now show that n = Θ((1/rcomm)
2 log(1/rcomm)) is a

tight bound on the number of robots for guaranteeing the
connectivity of G(0) with high probability.

Theorem 10 For uniformly randomly distributed robots in a
unit square with a communication radius rcomm,

n = Θ(
1

r2
comm

log
1

rcomm
) (11)

robots are necessary and sufficient to ensure a connected
communication graph at t = 0 with arbitrarily high probability
as rcomm → 0.

PROOF. Lemma 7 covers sufficiency; we are to show that there
is some non-trivial probability that G(0) is disconnected if the
number of robots satisfies

n = o(
1

r2
comm

log
1

rcomm
).

To prove the claim, we partition the unit square Q into
m= b2 equal sized small squares where b = �1.1/rcomm�. The
factor of 1.1 in the expression makes the side of the small
square larger than rcomm. Assuming that m is divisible by 3
(it is always possible to truncate some small squares to satisfy
this), we may group the small squares into m/9 groups of 3×3
blocks (see, e.g., Fig. 5).

If there is a single robot in a 3 × 3 block, the robot
cannot communicate with the rest of the robots if it falls
inside the small square in the center of the block (e.g., the
solid gray square in Fig. 5). By Lemmas 8 and 9, for less
than (m/9) log(m/9) = 2�1.1/rcomm�2 log(�1.1/rcomm�/3)/9
robots, the probability of having at least one of these 3× 3
block containing exactly one robot is at least 0.34 as m → ∞
(i.e., rcomm → 0). If a 3× 3 block has exactly one robot in
it, with probability of 1/9 the robot is in the middle square.
Therefore, with probability at least 0.34/9 ≈ 0.04, G(0) is
disconnected. �
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rcomm

Fig. 5. A 3×3 block as defined in the proof Theorem 10.

B. Ensuring target observability

With a connected communication graph G(0) guaranteed
by Lemma 5, we can solve a single assignment problem if
for each y ∈ Y 0, ‖ y− x ‖2≤ rsense for some x ∈ X 0. Similar
techniques used in the proof of Lemma 5 lead to a similar
lower bound on n.

Lemma 11 For fixed rsense and 0< ε < 1, every target y∈Y 0

is observable by some robot at t = 0 with probability at least
1− ε when

n ≥ �
√

2
rsense

�2 log(
1
ε
�
√

2
rsense

�2). (12)

PROOF. If we partition the unit square Q into �√2/rsense�2

equal sized small squares and there is at least one robot
in each small square, then any point of Q is within r sense

distance to some robot. Following the same argument used in
the proof of Lemma 5, the inequality from (12) ensures that
this happens with probability at least 1− ε . �

Putting together Lemmas 5 and 11, we obtain a lower bound
on n that makes a distance-optimal assignment possible.

Theorem 12 Fixing 0 < ε < 1, the communication graph is
connected and every target y∈Y 0 is observable by some robot
at t = 0 with probability at least 1− ε when

n ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
√

2
rsense

�2 log(
1
ε
�
√

2
rsense

�2), rsense <

√
10rcomm

5

�
√

5
rcomm

�2 log(
1
ε
�

√
5

rcomm
�2), rsense ≥

√
10rcomm

5
(13)

PROOF. For the case of rsense <
√

10rcomm/5, it is straight-
forward to check that (12) implies (8). Therefore, G(0) is
connected with probability 1− ε .

When rsense ≥
√

10rcomm/5, by Lemma 5, (8) implies that
G(0) is connected with probability 1− ε . Moreover, there is
at least one robot in each of the small squares with a side
length of at most rcomm/

√
5 (as specified in the proof of

Lemma 5). Having rsense ≥ √
10rcomm/5 guarantees that a

robot in a small square observes all targes within the same
small square. Therefore, every y ∈ Y 0 is within a distance of
rcomm to some x ∈ X 0. �

Remark. Theorem 12 is not an asymptotic result and works
for all rcomm and rsense. If high-probability asymptotic result
is desirable, Lemma 11 can be easily turned into a version
similar to Theorem 10, following essentially the same proof
techniques; we omit the details. In view of this fact, the bounds
from Theorem 12 are asymptotically tight.

V. HIERARCHICAL STRATEGIES FOR rsense ≥
√

2: OPTIMAL

DISTANCE AND PERFORMANCE GUARANTEES

In this section, we work with the (region-based) Commu-
nication Model 2 and assume that rsense ≥

√
2 (that is, every

robot is aware of the entire Y 0). The study of Communica-
tion Model 2, besides leading to interesting conclusions on
hierarchical strategies, also facilitates the analysis in the next
section as we revisit Communication Model 1. As mentioned,
a region-based communication model naturally leads to a
hierarchical strategy. Let h ≥ 1 be the number of hierarchies
and mi,1 ≤ i ≤ h, be the number of regions at hierarchy i, we
require that: 1. mi+1 > mi, 2.

√
mi divides

√
mi+1, 3. m1 ≡ 1,

and 4. a region at a higher numbered hierarchy does not span
multiple regions at a lower numbered hierarchy. We call the
associated strategy under these assumptions the hierarchical
divide-and-conquer strategy, the details of which are described
in Strategy 2. Note that for each region in Strategy 2, the robots
can again let the highest labeled robot within the region carry
out the strategy locally.

Strategy 2: HIERARCHICAL-DIVIDE-AND-CONQUER

Initial condition: X0,Y 0,h,m1, . . . ,mh

Outcome: permutation σ that assigns robot ai to y0
σ(i)

1 for each hierarchy i in decreasing order do
2 for each region j, 1 ≤ j ≤ mi do
3 let na and ng be the number of unmatched robots

and targets in region j, respectively
4 if na > ng > 0 then
5 pick the first ng robots from the na

unmatched robots and run an assignment
algorithm to match them with the ng

unmatched targets in region j
6 else if ng > na > 0 then
7 pick the first na targets from the ng

unmatched targets and run an assignment
algorithm to match the na unmatched robots
with these targets in region j

8 else
9 continue

It is clear that Strategy 2 is correct by construction because
|X0| = |Y 0|. The rest of this section is devoted to analyzing
the strategy. We begin with a single hierarchy (h = 1). Since
rsense ≥

√
2 implies that all robots are aware of the entire set

Y 0, the robots may form a consensus of which robot should
go to which target at t = 0 by finding the quantity

D∗
n = min

σ

n

∑
i=1

‖ x0
σ(i)− y0

i ‖2, (14)
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in which minσ is taken over all permutations σ of the integers
1, . . . ,n. This assignment problem can be solved using the
Hungarian method or any one of the Euclidean bipartite
matching algorithms. Ajtai, Komlós, and Tusnády proved the
following.

Theorem 13 (Optimal Matching [1]) With high probability,

C1

√
n logn ≤ D∗

n ≤C2

√
n logn, (15)

in which C1,C2 are positive constants.

That is, D∗
n =Θ(

√
n logn). Here, high probability means that

the given event happens with a probability of 1−O(n−c) for
some positive constant c. Although the authors did not provide
formulas for C1 and C2 in [1], simulation seems to suggest that
C1 < C2 < 1 and C2/C1 → 1 as n → ∞. As an example, for
200 ≤ n ≤ 10000, 0.4

√
n logn ≤ D∗

n ≤ 0.5
√

n logn on average
(see, e.g., Fig. 6). Since all robots can start moving directly to
their targets at t = 0, T ∗

n =D∗
n =Θ(

√
n logn) as well. Note that

this implies a total completion time of Θ(
√

logn/n), which
goes to zero as n → ∞.

 0.3

 0.4

 0.5

 0.6

 0.7

 0  200  400  600  800  1000
n  (number of agents)

Dn
*/(n log n)

1/2

Fig. 6. The ratio of D∗
n/
√

n logn. Each data point is an average of 25 runs.

Next we look at the general case of having h> 1 hierarchies.
To bound Dn, at each hierarchy i, we need to know the number
of robots that can be matched locally, given by Lemma 14.

Lemma 14 Suppose that the unit square Q is divided into m
equal sized small squares. The number of robots that are not
matched locally is

√
mn/π for large n.

PROOF. Focusing on a small square, say qi, the probabilities
of x0

1 ∈ X0 and y0
1 ∈ Y 0 falling into qi are both 1/m. The

probability of having x0
1 but not y0

1 in qi is (m−1)/m2; same
is true for the event of having y0

1 but not x0
1 in qi. The former

event represents a surplus of a robot in qi and the later a deficit
in qi. Thus, we may view the experiment of picking x 0

1 and y0
1

as a one step walk on the real line starting at the origin, with
(m− 1)/m2 probability of moving ±1. The entire process of
picking X 0 and Y 0 can then be treated as a random walk of n
such steps.

Denoting the move on the real line from the i-th step of the
random walk as a random variable Z j and let Sn =Z1+ . . .+Zn,
we know that [20]

lim
n→∞

E[|Sn|] = 2
√

n(m− 1)√
πm

.

To see why this is intuitively true, note E[Z2
j ] = 2(m− 1)/m2

and observe that

E[S2
n] = E[(Z1 + . . .+Zn)

2] = E[Z2
1 + . . .+Z2

n ]

= nE[Z2
j ] =

2n(m− 1)
m2 .

Since at most half of the m small squares should have a
surplus of robots on average, the total number of unmatched
robots in expectation, for large n, is no more than

mE[|Sn|]
2

=
m
2

2
√

n(m− 1)√
πm

≈
√

mn
π

.

�

Lemma 15 The total distance of matchings made at the
bottom hierarchy is no more than C2

√
n logn as n → ∞.

PROOF. For the robots that are matched locally, by (15), the
distance traveled by the robots in a square qi (which contains
ni robots) is no more than C2

√
ni logni/m. Applying Jensen’s

inequality to the concave function
√

x logx and letting x = ni

(we may simply ignore an ni if it is zero) yields

m

∑
i=1

C2

√
ni logni

m
≤C2

√
m

√
∑i ni

m
log

∑i ni

m
≤C2

√
n logn.

�

We now give an upper bound on Dn for general hierarchical
strategies.

Theorem 16 Suppose that the unit square Q is divided into
mi equal sized small squares at hierarchy i with a total of
h ≥ 2 hierarchies. Then

Dn ≤C2

√
n logn+

2

∑
i=h−1

[√
2n
π
(1−

√
mi

mi+1
)

]
+

√
2m2n

π
.

(16)

PROOF. The C2
√

n logn term on the right side of (16) is due
to Lemma 15. Then at each hierarchy i with 2 ≤ i < h, the
number of matched robots in total at this hierarchy is given
by

√
mi+1n/π −√

min/π. Since each of these robots needs
to travel at most a distance of

√
2/mi+1, the total distance

incurred at hierarchy i is
√

2n/π(1−√
mi/mi+1). The last

term on the right side of (16) is the distance incurred at the
top hierarchy (i.e., hierarchy 1). �

Remark. Theorem 16 allows us to upper bound the perfor-
mances of different hierarchical strategies depending on the
choices of h and {mi}. We observe that for fixed h and {mi}
that do not depend on n, the first term C2

√
n logn dominates

the other terms in (16) as n → ∞. This implies that Strategy
2 yields assignments of which the total distance is at most a
multiple of the true optimal distance.

Corollary 17 For fixed h and m1, . . . ,mh that do not depend
on n, Strategy 2 yields target assignment with Dn/D∗

n = O(1).
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For example, letting h ≥ 2 and mi = 4i−1 at hierarchy i, we
have:

Dn ≤C2

√
n logn+

2

∑
i=h−1

√
2n
π
(1−

√
1
4
)+ 4

√
n

2π

=C2

√
n logn+(h+ 2)

√
n

2π
.

(17)

For any fixed h, as n→∞, Dn/D∗
n ≤C2/C1 =O(1). Constant

approximation ratio can also be achieved when h and/or {m i}
depend on n. For example, letting h = 3, m3 = log2 n, and
m2 = logn, we have

Dn ≤C2

√
n logn+

√
2n
π
(1−

√
logn

log2 n
)+

√
2n logn

π
n→∞
= (C2 +

√
2
π
)
√

n logn.

(18)

Finally, since hierarchical strategies need not to run central-
ized assignment algorithms for all robots, the computational
part of these strategies can be significantly faster. We will
come back to this point in the next section.

VI. NEAR OPTIMAL STRATEGIES FOR ARBITRARY rcomm

After exploring hierarchical strategies for the region-based
communication model, we now return to Communication
Model 1 (Fig. 1(a)). If rcomm is arbitrary and the conditions
specified in Theorem 4 may not hold, the best we can do
is near distance-optimal strategies. In this section, we show
that constant ratio approximation of distant optimality is again
possible for the case of rsense ≥

√
2 with arbitrary rcomm. In par-

ticular, we study a simple rendezvous strategy followed by a
hierarchical rendezvous strategy that combines the rendezvous
strategy with the hierarchical strategies from Section V. The
basic idea behind these strategies is to move the robots to pass
around information about other robots’ locations.

A. A near distance-optimal rendezvous strategy

Our first suboptimal strategy uses moving robots for in-
formation aggregation until a robot is aware of the locations
of all robots (i.e., the set X 0), at which point a centralized
optimal assignment can be made. To carry out the strategy,
the unit square Q is divided into m = b2 disjoint, equal-sized
small squares, with b = �√2/rcomm�. These small squares are
labeled as qi, j’s, in which i and j are the row number and
column number of the square, respectively (see, e.g., Fig. 7).

q
2,5

Fig. 7. Directions for robots to move in the rendezvous strategy.

Based on its initial location, each robot can identify the
small square qi, j it lies in. At t = 0, the robots in the squares
on row 1 and row b start moving in the direction as indicated
in Fig. 7. We want to use these robot to pass the information of
where all robots are. At most one robot per square is required
to move since all robots in a small square can communicate
with each other by the assumption b = �√2/rcomm�.

Assuming that a robot in a square qi, j is moving downwards,
it keeps moving until it is within the communication radius of
a robot in a square with label qi+k, j,k ≥ 1, at which point
it passes over the information it has and stops. The robot in
qi+k, j then starts doing the same. The procedure continues until
a robot reaches the middle of Q (row �b/2�). It takes at most
1/2 time unit (recall that we assume robots travel at unit speed)
for this to happen. Once this happens, the robots in the squares
belonging to row �b/2� repeat the same process horizontally
until a robot in the center of Q knows the locations of all other
robots. At this point, the robot in the center of Q that knows
the location of all other robots makes a global assignment so
that each robot is matched with a target. The moving process
is then reversed to deliver the assignment information to all
robots. The pseudo code of the strategy is given in Strategy
3.

Strategy 3: RENDEZVOUS

Initial condition: X0,Y 0,rcomm

Outcome: produces permutation σ that assigns robots to
targets and communicate σ to all robots

1 each robot computes its square qi, j based on rcomm, let
the highest labeled robot within each qi, j be ai, j, which
represents qi, j for each qi, j , 1 ≤ i, j ≤ b = �√2/rcomm�
do

2 if i �= �b/2� then
3 ai, j waits for up to |�b/2�− i|/b units of time

for information from the previous square; after
receiving information or after the wait time
passes, it starts moving to the next squares and
delivers its information once it can communicate
with another robot in the these squares; it then
stops

4 else
5 ai, j waits for up to 1/2+ |�b/2�− j|/b units of

time for information from the previous square;
after receiving information or after the wait time
passes, it starts moving to the next squares and
delivers its information once it can communicate
with another robot in these squares; it then stops

6 robot a�b/2�,�b/2� computes σ ; the earlier communication
process is then reversed to deliver σ to all robots.

Strategy 3 is correct by construction. Besides the distance
from the assignment, the robots in each column travel at
most a total distance of two. The middle row incurs an extra
distance of at most two. Thus, Dn < D∗

n +2b+2. Since D∗
n ≈

Θ(
√

n logn), it dominates 2b+2 when b= o(
√

n logn). In par-
ticular, n = Θ(1/r2

comm) satisfies this requirement. Therefore,
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Strategy 3 can yield near distance-optimal solution without
requiring an n as large as (11) with respect to 1/rcomm.

A drawback of Strategy 3 is that no robot can move to the
targets until the assignment phase is complete. This yields a
total task completion time of Tn ≈ 2n+T ∗

n . Such a Tn is not
desirable since T ∗

n =O(
√

n logn) asymptotically. Furthermore,
Strategy 3 requires running a centralized assignment algorithm
for all robots. This might be impractical for large n. We
address these issues with decentralized hierarchical strategies.

B. Decentralized hierarchical strategies

Among possible decentralized hierarchical strategies under
Communication Model 1, we first look at one by combin-
ing Strategies 2 and 3. Instead of waiting for a centralized
assignment to be made, in each of the small square qi, j as
specified in Strategy 3, we let the robots in the square be
assigned to targets that belong to the same square (we refer to
these as local assignments). The robots that are not matched to
targets then carry out Strategy 3. We denote this hierarchical
rendezvous strategy as Strategy 4 and omit the pseudo code.

Corollary 18 For strategy 4 (2-level Hierarchical Renezvous),

Dn ≤C2

√
n logn+

√
2mn

π
+ 2

√
m+ 2, (19)

and
Tn = Θ(

√
n logn+

√
mn). (20)

PROOF. The bound on Dn, given by (19), is straightforward to
compute using Theorem 16, in which the first two terms on
the right side of (19) correspond to the first and third terms of
the right side of (16), respectively, and the last two terms are
due to communication overhead. For total completion time, all
but

√
mn/π robots can start moving to their targets at t = 0.

For the
√

mn/π robots, they need to wait no more than two
units of time each before moving to their targets. This gives
us (20).

Remark. Similar to Strategy 3, for any fixed m, Dn/D∗
n =

O(1) (as n → ∞). Moreover, in contrast to Strategy 3, for any
fixed m, Tn/T ∗

n = O(1). Suppose that a centralized algorithm
requires time t(n), using the same centralized algorithm,
Strategy 4 has a computational time complexity O(mt(n/m)+
t(
√

mn)). If t(n) = O(n3) as given by the Hungarian method,
then Strategy 4 has a running time of O(n3/m2 +(mn)3/2).
Taking n= 10000,m= 10, for example, we get about a 1000-
time speedup.

By introducing additional hierarchies, Strategy 4 can be
easily extended to a multi-hierarchy decentralized strategy.
Depending on how the subdivisions are made, many such
strategies are possible. For example, using h ≥ 2 hierarchies
with each hierarchy i having 4 i−1 small squares, we get a
“quad-merging” strategy as illustrated in Fig. 8, in which up
to four representatives in four adjacent squares meet to decide
local assignment of the robots in these squares at a given
hierarchy level.

Although these suboptimal strategies vary in detail, they can
be easily analyzed with the help of Theorem 16. For example,
we look at an extension to Strategy 4 with three hierarchies; let

Fig. 8. Illustration of robot movements in a potential hierarchical strategy.

us call this strategy Strategy 5. After partitioning the bottom
(or third) hierarchy to m squares, the middle (or second)
hierarchy is partitioned into k =

√
m small squares. At either

the third or the second hierarchy, local assignments are made,
followed by applying the rendezvous strategy as given in
Strategy 3. It is again straightforward to derive

Corollary 19 For Strategy 5 (3-level Hierarchical Ren-
dezvous),

Dn ≤C2

√
n logn+ 2

√
n
√

m+ 4
√

m+ 2. (21)

Remark. Again, Dn/D∗
n = O(1) as n → ∞ for a fixed m.

Introducing more hierarchy levels extends the total completion
time Tn, which is approximately 2

√
m more; thus, the total

completion time of Strategy 5 is also given by (20). Following
similar analysis, the overall computation time required by
Strategy 5 is O(mt(n/m) +

√
mt(

√
n) + t(

√
n
√

m)) given a
centralized assignment algorithm that runs in t(n) time.

VII. SIMULATION STUDIES

A. Number of required robots for a connected G(0)
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Fig. 9. Effects of n on the connectivity of G(0) for different values of rcomm.

In this subsection, we show a result of simulation to verify
our theoretical findings in Section IV. Since the bounds
over rcomm and rsense are similar, we focus on rcomm and
confirm the requirement for the connectivity of G(0) for
several rcomm’s ranging from 0.01 to 0.2. For each fixed
rcomm, varying numbers of robots are used starting from
n = log(1/rcomm)/r2

comm = − logrcomm/r2
comm (the number of

robots goes as high as 3× 105 for the case of rcomm = 0.01).
1000 trials were run for each fixed combination of r comm



11

and n; the percentages of the runs with a connected G(0)
were reported in the simulation result shown in Fig. 9. The
simulation suggests that the bounds on n from Theorem 10
are fairly tight.

TABLE I
COMPARISON BETWEEN (4) AND (6)

prob.
rcomm

0.2 0.1 0.05 0.02 0.01
0.1 0.001, 0.82 0.001, 0.96 0.001, 0.99 0.001, 1 0.003, 1
0.5 0.007, 0.92 0.006, 0.98 0.027, 0.99 0.064, 1 0.081, 1
0.9 0.2, 0.99 0.31, 1 0.381, 1 0.477, 1 0.502, 1
0.99 0.702, 1 0.742, 1 0.794, 1 0.834, 1 0.855, 1

To compare to (4), which also allows for estimation of n
in terms of rcomm with a specified probability for obtaining
a connected G(0), for rcomm from 0.01 to 0.2, we computed
n based on (4) and (6) for several probabilities (from 0.1 to
0.99). We then use these n’s to estimate the actual probability
of having a connected G(0). We list the result in Table I. Each
main entry of the table has two probabilities separated by a
comma, obtained using (4) and (6), respectively. As we can
see, (4) gives underestimates (due to its asymptotic nature)
and cannot be used to provide probabilistic guarantees. On
the other hand, (6) provides overestimates that guarantees the
desired probability.

B. Performance of near optimal strategies

Next, we simulate Strategies 2-5 and evaluate Dn, Tn,
and computational time for these strategies over varying
values of n and rcomm. Due to our choice of k =

√
m in

Strategy 5, for uniformity, we pick specific rcomm’s so that
m = �√2/rcomm� is a always perfect square. These values
are rcomm = 0.16,0.09,0.057, and 0.04, which correspond to
m= 81,256,625, and 1296, respectively. The number of robots
used in each simulation ranges from 100 to 10000. For each
n, 10 problems are randomly generated and used across all
strategies. We test Strategy 2 using the same (two-hierarchy
and three-hierarchy) partitions from Strategies 4 and 5.
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Fig. 10. Distance optimality of Strategy 3 over varying n and rcomm.

Distance optimality: The ratios Dn/D∗
n for Strategy 3 over

different n and rcomm are plotted in Fig. 10. We observe that
the overhead for establishing global communication among the
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Fig. 11. Distance optimality of Strategy 4 over varying n and rcomm.
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Fig. 12. The effect of varying n on the distance optimality of Strategy 4 with
rcomm = 0.16 (m = 81).

robots becomes insignificant as n increases, driving Dn/D∗
n to

close to one.
For Strategy 4, the ratios were plotted similarly in Fig. 11

but with (small) errorbars. The errorbars display the standard
deviation over the 10 runs (we omitted these from a figure,
such as Fig. 10, when they are too small to see). They can
be better seen in Fig. 12, which is a zoomed-in version of the
rcomm = 0.16 line from Fig. 11.
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Fig. 13. Distance optimality of Strategy 5 over varying n and rcomm.

As expected, for a fixed rcomm, Dn/D∗
n decreases as n

increases. For n = 10000, the approximation ratios for our
choices of rcomm are around 1.4 (due to the slow growing
nature of D∗

n ∼
√

n logn; fixing any rcomm, this ratio should be
close to one for large n). On the other hand, for a fixed n, as
the division of the unit square Q gets finer, Dn/D∗

n increases,
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implying that decreasing communication radius has a negative
effect on distance optimality. We observe similar results on
distance optimality of Strategy 5 (see Fig. 13).

If we remove the rendezvous part from Strategies 4 and 5,
they become versions of Strategy 2. The distance optimality
performance of these two particular versions of Strategy 2 are
briefly evaluated and given in Fig. 14 and Fig. 15. For all
subdivisions made (m = 81,256,625,1296), Dn/D∗

n ratios of
less than two are achieved and can go as low as 1.06, showing
that hierarchical decision making processes can provide very
good optimality guarantees.
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Fig. 14. The assignment cost of a two-level “pure” hierarchical strategy.
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Fig. 15. The assignment cost of a three-level “pure” hierarchical strategy.

Computational time: We list the computational time, in
seconds, for Strategies 3-5 in Table II (a table instead of
a figure is used due to the number of data points and the
large differences between the strategies). The standard O(n 3)
Hugarian method is used as the baseline assignment algorithm.
Each main entry of the table lists three numbers corresponding
to the computational time of Strategies 3, 4, and 5, respec-
tively, for the given rcomm and n combination (note that any
version of Strategy 2 has the same amount of computation as
a corresponding rendezvous-based strategy). As expected, hi-
erarchical assignment greatly reduces the computational time,
often by a factor over 103.

Time optimality: Since Strategies 3-5 sacrifice distance (and
therefore, time) to compensate for limited communication, we
do not expect the total completion time Tn of these strategies
to compete with T ∗

n . For example, in (20), although Tn → T ∗
n as

n→ ∞ for fixed m = �√2/rcomm�2, it requires very large n for

TABLE II
COMPUTATIONAL TIME FOR STRATEGIES 3-5

# of robots, n
rcomm(m)

0.16 (81) 0.09 (256) 0.057 (625) 0.04 (1296)

100
0.007
0.001
0.001

0.007
0.002
0.0001

0.007
0.002
0.0004

0.007
0.003
0.0004

200
0.02
0.001
0.0001

0.02
0.005
0.0003

0.02
0.01

0.0004

0.02
0.02

0.0006

500
0.34
0.005
0.0006

0.34
0.02
0.001

0.34
0.07
0.002

0.34
0.14
0.003

1000
2.76
0.015
0.002

2.76
0.07
0.003

2.76
0.22
0.003

2.76
0.54
0.006

2000
22.3
0.05
0.009

22.3
0.20
0.006

22.3
0.70
0.011

22.3
1.90
0.015

5000
345
0.02
0.069

345
0.78
0.032

345
2.84
0.043

345
8.28
0.058

10000
2756
0.83
0.43

2756
2.32
0.11

2756
8.35
0.11

2756
24.4
0.14

√
logn to dominate

√
m. Thus, we only compare Tn among

Strategies 3-5. Using Tn(i) to denote the Tn for Strategy i,
Tn(4)/Tn(3) and Tn(5)/Tn(3) are plotted in Fig. 16 and 17.
As n increases, Strategies 4 and 5 both take much less total
completion time on average.
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VIII. CONCLUSION AND DISCUSSIONS

Focusing on the distance optimality for the target assign-
ment problem in a robotic network setting, we have char-
acterized a necessary and sufficient condition under which
true optimality can be achieved. We further provided a di-
rect formula for computing the number of robots sufficient
for probabilistically guaranteeing such an optimal solution.
Then, we took a difference angle and looked at suboptimal
strategies and their asymptotic performances as the number
of robots goes to infinity. We showed that these strategies
generally yield a constant approximation ratio when it comes
to minimizing the total distance traveled by all robots. Many
of these decentralized strategies also provide computational
advantages over a centralized one.

We conclude the paper with a discussion on our choice on
certain elements in the problem formulation and how they may
be generalized.

Equal number of initial and target locations: In the problem
statement we assume that |X 0|= |Y 0|; our result based on this
assumption generally holds when |X 0| and |Y 0| are roughly the
same because the locations in X 0 and Y 0 are randomly and in-
dependently selected. If this is not the case, when |X 0|� |Y 0|,
it is likely that for a yi ∈ Y 0, there is a unique xi ∈ X0 that is
closest to yi [25]. Moreover, for two different y i,y j, xi �= x j.
The spatial assignment problem then degenerates to finding
the the nearest robot for each y ∈ Y 0. When |X 0| � |Y 0|, the
problem becomes a multiple salesmen version of the traveling
salesman problem (we have a standard traveling salesman
problem when |X 0| = 1), which is an NP-hard problem. It
remains an interesting open question to investigate the middle
ground, i.e., |X 0| = C|Y 0| for some constant C (for example
C ∈ [0.1,10]).

Suboptimal strategies for arbitrary rsense: In this paper, we
did not provide suboptimal strategies in the case of arbitrary
rsense. However, we note that by modifying the rendezvous
strategy (Strategy 3), it is possible to again get asymptotically
constant approximation ratio on distance optimality for fixed
rsense as n → ∞. It could be interesting to investigate whether
there are better strategies when n is not very large. The same
could be said for suboptimal strategies when rcomm is arbitrary.

Placement of initial and target locations: The assumption
that all initial and target locations are independently picked
uniformly randomly at t = 0 captures spatial randomness quite
well. Although it is beyond the scope of this paper, it could be
interesting to address the issue of randomness in time and the
case in which the spatial distribution is not uniformly random
(i.e., other spatial-temporal distributions).

Minimizing over other powers of the 2-norm: On the side
of optimality measures, we note that Theorem 13 generalizes
to arbitrary powers of the Euclidean 2-norm [1]. That is, for

D∗
n,p = min

σ

n

∑
i=1

‖ x0
σ(i)− y0

i ‖p
2 , (22)

it holds true that

D∗
n,p ∼ n(logn/n)p/2. (23)

As p → ∞, (22) minimizes the longest distance traveled by
any robot. Although we restrict our attention to the case of

p = 1 in this paper, our results readily extend to other values
of p (i.e., other optimality criteria) with (23).
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